
6-Decision Tree & MDL-1

Machine Learning

Lecture 6-Decision Tree & MDL

Lecturer: Haim Permuter Scribes: Asaf Lavi and Ben Marinberg

This lecture discusses decision trees and the minimum description length principle. the

goal of desicion trees is to have a series of questions(tree), that ends in decisions(leaves).

Discussed as a regulating mechanism, the MDL shows that the best hypothesis for a

given set of data is that which leads to the best compression of the data. The last part of

the lecture discuses two methods for avoiding overfitting: Random Forest and Pruning.

I. DECISION TREE

Here we have a method in which we create a k’-nary tree. Each node represents a

question about the features, Θn. Each branch represents an answer to its origin node,

one of k options. Each leaf represents a decision. A decision tree is easily implemented

in a variety of applications and it is useful for both classification and regression. This

lecture introduces the notation of the binary decision tree, but extending it to k’-nary is

straightforward. Let {xi} be the i’th sample, i = 1, 2, ..,m, each of which has n features,

and Θ is the question asked in each node. Note that a large part of this section is taken

from the book and lecture by Prof. Shai Shalev-Shwartz[1], [2].

Example 1 (classification-Papaya) Assume X is a papaya. The goal is to decide

whether or not its tasty, by using a decision tree. Each node represents a question about

the papaya. As we can see from the example (Fig.1), the top node asks about the color

of the papaya, which, if is not the right color, leads to the decision that the papaya is not

tasty. If it is the correct color we proceed to the next node and ask the next question. If

the answers to the question about both color and softness were ”right” (i.e according to

our definitions of tasty papaya), we decide that the papaya is tasty.

6-Decision Tree & MDL-2

Color

Tasty

Not tasty

Not tasty
Other

Other

Softness

light yellow
Pale green to

Firm but
not hard

Fig. 1. Classic Decision tree for papaya classification,using two features: color and softness.

A. Cost functions

Let {xi,j} be the j’th feature of the i’th sample, and {yi}i=1..m be the classifications

(labels). Define gain, where C(x) is the cost function, as

Gain(Y ; Θ) = C(Y)− C(Y |Θ) = C(Y)−
∑

θ∈Θ

P (Θ = θ)C(Y |Θ = θ) (1)

Examples of cost functions

1) Entropy H(a) = E[− log2 PΘ(a)]

2) Gini index G(a) = 4a(1− a)

3) Error E(a) = 2min(a, 1− a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cost functions

H(a)
G(a)
E(a)

Fig. 2. Common cost function

6-Decision Tree & MDL-3

Gain with entropy as the cost is called information gain, and it is widely used in

applications. Note that information gain is the mutual information we learned about

in the first lecture of the course.

Information Gain(Y ; Θ) = H(Y)−H(Y |Θ) , I(X; Θ) (2)

Example 2 (One layer decision tree)

Lets begin with one-layer depth. Assume that we have 100 strawberries - 50 are tasty

and 50 are not. To aid in their classification, we ask about their color. Determine θ = 0

as not red, and θ = 1 as red.

Color

Red

θ = 1

Otherwise

θ = 0

Tasty 48

Not tasty 12

Tasty 2

Not tasty 38

Fig. 3. One layer decision tree

Information Gain = H(Y)−H(Y |Θ) = 1− 2

5
Hbinary(

2

40
)− 3

5
Hbinary(

12

60
) (3)

Set cost to be the Gini index and we have

Gain(Y ; Θ) = 1− 2

5
G(

2

40
)− 3

5
G(

12

60
) (4)

B. Algorithm

ID3-Iterative Dichotomiser 3 is an algorithm invented by Quinlan[3] for creating a

decision tree. It is a recursive and greedy algorithm whose inputs are the S-data set and

A-features. Its stopping conditions are simple: either all the remaining labels are the same

or it ran out of unused features.

6-Decision Tree & MDL-4

ID3(S,A)

create a new node;

if all samples are ones then

label new node as leaf labeled 1;

else

if all samples are zeros then

label new node as leaf labeled 0 ;

else

if A ∈ ∅ then

label new node as leaf labeled as the majority of labels in S;

else

p = argmax
a∈A

G(S, 1xa=1) ;

ID3(S1xa=0, A\p);

ID3(S1xa=1, A\p);

end

end

end

C. Regression

Like with classification problems, decision trees can also be simply applied in

regression problems. Generally speaking, we substitute the label decision with the average

or mean. So instead of asking questions with k answers, we ask about k ranges. And

instead of taking the majority of the labels we have the average or mean of the leaf’s data.

For example when putting a price on a new house, its estimated value will be the mean

of the values of all houses with the same features (i.e. identical answers to questions on

the tree).

6-Decision Tree & MDL-5

II. MDL

The minimum description length principle describes a way to minimize models. It is

similar to combining the length (or in our case, the tree depth) and the cost into a new

and improved cost function. The goal of MDL can be described as ”to find regularity in

the data”. where ’regularity’ means compressibility. MDL combines the insights it gains

by viewing learning as data compression: it tells us that, for a given set of hypotheses

h and data set S, we should try to find the hypothesis or combination of hypotheses in

H that compresses S the most. MDL procedures automatically and inherently protect

against overfitting and can be used to estimate both the parameters and the structure of

a model. Also, in contrast to other statistical methods, MDL procedures have a clear

statistical interpretation.

Let P be the distribution, S = {xi, yi}mi=1
i.i.d∼ Q to be the samples set, and h to be

a hypothesis (function) X h−→ Y . Define d(h) to be the description of h with the prefix

property(such that-there is no whole description in the system that is a prefix of any other

description in the system). Define LD(h) = Pr(Y 6= h(X)) as theoretical risk, and define

empirical risk as LS(h) =
1
m
{i : h(xi) 6= yi} = 1

m

m∑

i=1

1{h(xi) 6=yi}. Define the length of the

description of h as w(h) = 2−|d(h)|. Denote the Kraft inequality proved in this course’s

first lecture,

∑

h

w(h) =
∑

h

2−|d(h)| ≤ 1 (5)

Theorem 1 (MDL bound) :

Let w be H w−→ R such that
∑

h∈H

w(h) ≤ 1. Then, with a probability of at least 1 − δ

over S ∼ Qm we have:

∀h ∈ H, LD(h) ≤ LS(h) +

√

− log(w(h)) + log(2
δ
)

2m

Or alternately

∀h ∈ H, Pr



Ld(h)− LS(h) ≤

√

− log(w(h)) + log(2
δ
)

2m



 ≥ 1− δ

6-Decision Tree & MDL-6

The proof of the MDL bound is based mainly on Hoeffding’s inequality, wherein setting

some free parameters we bring the inequality to seen like the bound we need. From here

on the proof is straightforward.

Lemma 1 (Hoeffding’s Inequality) :

Let X1, X2, ..., Xn be independent random variables , bounded by [ai, bi]. Following

Hoeffding:

Pr
(
X − E[X] ≥ t

)
≤ exp

(

− 2n2t2
∑n

i=1 (bi − ai)2

)

(6)

Or similarly:

Pr

(

| 1
m

m∑

i=1

Xi − µ| > ǫ

)

≤ 2 exp

(

− 2mǫ2
∑n

i=1 (bi − ai)2

)

(7)

See the appendix for a proof of this lemma.

Proof 1 : Assume {Zi}, where the independent and bounded r.v. a ≤ Zi ≤ b. So by

Lemma 1

Pr

(

| 1
m

m∑

i=1

Zi − µ| > ǫ

)

≤ 2 exp

(

− 2mǫ2

(b− a)2

)

(8)

Set ǫ =

√
log(2

δh
)

2m
. Define δh = w(h) · δ for every h

Pr



| 1
m

m∑

i=1

Zi − µ| >

√

log(2
δn
)

2m



 ≤ 2 exp



−2m
log(2

δh
)

2m

(b− a)2



 = δn (9)

Mark Zi = 1{h(xi) 6=yi} and µ = E[Zi]

Pr



| 1
m

m∑

i=1

1{h(xi) 6=yi} − µ| >

√

log(2
δh
)

2m



 ≤ δh (10)

Denote that

E[LS] = E

[

1

m

m∑

i=1

1{h(xi) 6=yi}

]

=
1

m

m∑

i=1

E[1{h(xi) 6=yi}] = Pr(Y 6= h(X)) = LD. (11)

So for a fixed h

∀h ∈ H Pr



|LS(h)− LD(h)| >

√

− log(w(h)) + log(2
δ
)

2m



 ≤ δh (12)

6-Decision Tree & MDL-7

Applying the union bound

Pr



|LD − LS| >

√

− log(w(h)) + log(2
δ
)

2m



 ≤
∑

h∈H

w(n)

︸ ︷︷ ︸

≤1

δ = δ (13)

Hence, we have

Pr



|LD − LS| ≤

√

− log(w(h)) + log(2
δ
)

2m



 ≥ 1− δ � (14)

When exploiting the MDL bound to optimize a decision tree, the most common method

employed is pruning. The simple algorithm suggests testing each node of the tree with

the following statement, which we define as a cost for the algorithm:

Cost(h) =

√

− log(w(h)) + log(2
δ
)

2m
. (15)

Now all that’s left is to calculate the cost with and without each node. If the cost difference

is significant, prune (i.e. delete the node). Pruning will be farther discussed in the next

section. An alternative approach is to use the MDL bound to set the tree’s optimal depth,

and then to use a modified algorithm to construct the tree by using combinations of

features.

III. AVOIDING OVER-FITTING

A. Random forest

The general method of random decision forests was first proposed in 1995 by Ho[7]

who established that if forests of trees split with oblique hyperplanes, are randomly

restricted to be sensitive to only selected feature dimensions, they can gain accuracy

as they grow without suffering from over-training. Random forests are an ensemble

learning method for classification, regression and other tasks that operate by constructing

a multitude of decision trees at training time. The output of the trees comprises the

class, i.e. the mode (the value that appears most often), of the classes for classification

problems, or the mean prediction of the individual trees for regression. Random decision

forests correct the habit of decision trees to overfit to their training set.[5]

6-Decision Tree & MDL-8

1) Algorithm: The idea behind random decision forests is to train many small trees

with subsets of the samples. For each tree, we randomly select n samples of all the

samples, for those n samples we choose (again randomly) k features that will be used to

train the specific tree. When we have the new subsets, we should use the ID3 algorithm

and Feedforward for each tree. For classification, we take the majority of all trees to

make a decision, whereas for regression problems, we calculate the average of all trees

to reach a decision. The reason for the randomness is to decrease the correlation between

trees, and in so doing, to contribute to gains in accuracy. For example, if one or a few

features are very strong predictors for the response variable (the label), these features

will be selected in many of the B trees, causing them to become correlated.

Let B be the numbers of trees. For b = 1,...,B

- Randomly choose x′ = {Xi,j}, a matrix with n rows (samples) and k columns

(features).

- Train a classification or regression tree fb(x) on X ′.

After training all trees, we want to make a decision. For classification, we will take

the majority of all trees, and for regression, we will take the mean value:

f̂= 1
B

B∑

b=1

fb(x
′
b)

Typically, for a classification problem with p features,
√
p (rounded down) features are

used in each split. For regression problems the inventors recommend p

3
(rounded down)

with a minimum node size of 5 as the default.

B. Pruning

The optimal final tree size in a decision tree algorithm is not a trivial matter. A tree that

is too large risks overfitting the training data, thus rendering it poorly generalizable to

new samples. Conversely, a tree that is too small might not capture important structural

information about the sample space. Determining when a tree algorithm should stop,

however, is difficult because one cannot know whether the addition of a single extra

node will dramatically decrease error. This problem, which is known as the horizon

6-Decision Tree & MDL-9

effect,, is commonly addressed by growing the tree until each node contains a small

number of instances and then by using pruning to remove nodes that do not provide

additional information. Pruning should reduce the size of a learning tree without reducing

its predictive accuracy as measured by a cross-validation set. There are many techniques

for tree pruning that differ in terms of the measurement that is used to optimize

performance.[6]

1) Techniques: Generally speaking, tree pruning techniques can be classified as either

top down - traverse nodes and trim subtrees starting at the root, or up - start at the

leaf nodes. Each pruning technique has advantages and weaknesses that, if known and

understood, can aid us in selecting the most appropriate method in every instance.Here we

will learn two popular algorithms, one each from the top-down and bottom-up approaches.

1) Cost complexity pruning (top-down) -

Let’s define:

• {Ti}i=0,...,m - series of trees where T0 is the original tree and Tm is the root

alone.

• Error Rate of a tree - err(T, S) where T is the current tree and S is the

data set.

• Function - prune(T, t) - defines the resultant tree after removal of subtrees t

from T .

• Function - leaves(T) - defines the quantity of leaves at tree T .

At each step,i, the tree is created by removing a subtree t from tree i − 1 and

replacing it with a leaf node whose value is chosen as in the tree building algorithm.

First we find the error rate err(Ti, S) for the current tree Ti and then we search

for the subtree that minimizes the expression:
err(prune(Ti,t),S)−err(Ti,S)

|leaves(Ti)|−|leaves(prune(Ti,t))|

Once the series of trees has been created, the best tree is chosen base on generalized

accuracy as measured by a training set or by cross-validation.

2) Reduced error pruning (bottom-up) -

Starting at the leaves, each node is replaced with its most popular class. If the

prediction accuracy is not affected then the change is kept. Very simple to apply,

6-Decision Tree & MDL-10

this technique has the added advantage of being rapid.

IV. APPENDIX

Recall Lemma 1 - Let X1, X2, ..., Xn be independent random variables bounded by

[ai, bi]. Define the empirical mean of these by

X =
1

n
(X1 +X2 + ...+Xn).

Lemma 1 states that:

Pr(|X − E[X]| ≥ t) ≤ 2 exp

(

− 2n2t2
∑n

i=1 (bi − ai)2

)

. (16)

Here E[X] is the expected value of X . Setting the following

Sn = X1 +X2 + ...+Xn. (17)

We have:

P (|Sn − E[Sn]| ≥ t) ≤ 2 exp

(

− 2t2
∑n

i=1 (bi − ai)2

)

(18)

Lemma 2 (Hoeffding Lemma) Suppose X is a real random variable with mean equal

to zero such that P (X ∈ [a, b]) = 1. Then

E[esX ≤ exp(
1

8
s2(b− a)2).

Another inequality we need is

Lemma 3 (Markov’s inequality) Let X be a non negative r.v. and a > 0, then:

P (X ≥ a) ≤ E[X]

a
.

Proof 2 Suppose X1, X2, ..., Xn are n independent r.v. such that

P (Xi ∈ [ai, bi]) = 1, 1 ≤ i ≤ n.

Let

Sn = X1 +X2 + ...+Xn.

Then for s, t ≥ 0, the independence of Xi and Markov’s inequality implies:

P (Sn − E[Sn] ≥ t) = P (es(Sn−E[Sn]) ≥ est) (19)

6-Decision Tree & MDL-11

≤ e−st
E

[

es(Sn−E[Sn])

]

(20)

= e−st

n∏

i=1

E

[

es(Xi−E[Xi])

]

(21)

≤ e−st

n∏

i=1

e
s
2(bi−ai)

2

8 (22)

= exp

(

−st+
1

8
s2

n∑

i=1

(bi − ai)
2

)

. (23)

Now, for us to obtain the best possible upper bound, we need to find the minima of

right-hand side of the last inequality as a function of s. Define g : R+
g−→ R as

g(s) = −st+
s2

8

n∑

i=1

(bi − ai)
2

Note that g(s) is a quadric function, and hence, its minimum is at

s =
4t

∑n

i=1 (bi − ai)2
.

Thus we get

P (Sn − E[Sn] ≥ t) ≤ exp

(

− 2t2
∑n

i=1 (bi − ai)2

)

(24)

P (|Sn − E[Sn]| ≥ t) ≤ 2 exp

(

− 2t2
∑n

i=1 (bi − ai)2

)

� (25)

Refer to[4] for further reading and better understanding about this subject.

REFERENCES

[1] Shai Shalev-Shwartz. Understanding Machine Learning course, Lecture No.4,

Hebrew University of Jerusalem, 2014.

[2] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms

May,2015.

[3] Quinlan, J. R. 1986. Induction of Decision Trees

http://hunch.net/∼coms-4771/quinlan.pdf Netherlands, 1986

[4] Hoeffding, Wassily. ”Probability inequalities for sums of bounded random variables”. Journal of the American

Statistical Association ,Vol. 58, No. 301 (Mar., 1963), pp. 13-30

[5] Wikipedia https://en.wikipedia.org/wiki/Random forest

[6] Wikipedia https://en.wikipedia.org/wiki/Pruning (decision trees)

[7] Ho, Tin Kam (1995). Proceedings of the 3rd International Conference on Document Analysis and Recognition,

Montreal, QC, 1416 August 1995. pp. 278282. http://ect.bell-labs.com/who/tkh/publications/papers/odt.pdf

